Functionals related to a to the Bitrace on Partial *O -Algebras

Yusuf Ibrahim Nigerian Defence Academy, Mathematics /Comp. Sci. Department, Kaduna, Nigeria * Email address : yusufian68@yahoo.com

ABSTRACT: We consider functionals defined on some certain subspaces of a partial O*-algebra \mathfrak{M} (i.e, a standard, unital, subalgebra, of a partial *- algebras $\mathcal{L}^+_w(\mathcal{D},\mathcal{H})$). On these subspaces we define the right *-representations(resp., left *-representations) and using such representations we introduce the right (resp., left) regular functionals related to the Bitrace. Simple relations are given for such functionals.

Key words: partial *- algebras $\mathcal{L}^+_w(\mathcal{D}, \mathcal{H})$, Bitrace, regular functionals, *-representations.

1. Introduction:

In recent years algebras of unbounded operators have been studied by many mathematicians. In the algebraic formulation of quantum field theory or quantum statistical mechanics, the C^* – algebraic setting is however too restrictive since in general the observables of a physical system are unbounded linear operators. The C^* algebraic approach to quantum theory is a rigid scheme to include in its framework all objects of physical interest and this has led to several possible generalizations namely quasi* algebras, partial *- algebras and so on. Here consider one of such we

generalization called the partial O *-,Ekhaguere (2007) algebras M. introduced an unbounded bitrace on a partial O*-algebra \mathfrak{M} . The unbounded bitrace played an important role in the classification of partial O*- algebra M. Here we consider two unbounded functionals $\psi_{(\tau,\tau)}^{\mathcal{G}_{\tau}^{r}}: \mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r} \to \mathbb{C}^{*}$ and $\psi_{(\cdot,\cdot)}^{\mathcal{G}_{\tau}^{\ell}} : \mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell} \to \mathbb{C}^{*}$, respectively, where, \mathcal{G}_{τ}^{r} , $\mathcal{G}_{\tau}^{\ell}$, are dense subspaces respectively. The notion of right *representations left *__ (resp., *representations*) is introduced. With this notions we define *right* (resp., *left*) regular functionals related to such bitrace defined on partial O*- algebra

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 ISSN 2229-5518

 \mathfrak{M} . We state the properties of such functionals.

2. Preliminaries on Partial *-Algebra:

The basic structure is a quadruplet $(\mathcal{A}, \Gamma, *,$

.) This comprises of an involutive
complex linear space A with an involution *
, and a relation Γ ⊆ A × A on A, with a
partial multiplication "·" on A, such that

- 1) $(x, y) \in \Gamma \Leftrightarrow x. y \in \mathcal{A}$
- 2) $(x, y) \in \Gamma \Leftrightarrow (y^*, x^*) \in \Gamma$, and $(x, y)^* = y^* \cdot x^*$;
- 3) $(x, y) \in \Gamma$ and $(x, z) \in \Gamma \Rightarrow$ $(x, \alpha y + \beta z) \in \Gamma$ and then $x. (\alpha y + \beta z) = \alpha(x, y) + \beta(x, z)$

A partial *-algebra is in general, *non-associative* thereby making the study largely dependent on several classes of multipliers introduced as follows.For a partial algebra $(\mathcal{A}, \Gamma, *, \cdot)$ for a subset $\mathfrak{S} \subseteq \mathcal{A}$ and a point $x \in \mathcal{A}$, let L(x) = $\{x \in \mathcal{A}: (y, x) \in \Gamma\}$ and R(x) = $\{y \in \mathcal{A}: (x, y) \in \Gamma\}$

 $L(\mathfrak{S}) = \bigcap \{ x \in \mathcal{A} \colon (y, x) \in \Gamma \} = \bigcap L(x)$

$$R(\mathfrak{S}) = \bigcap \{ y \in \mathcal{A} : (x, y) \in \Gamma \} = \bigcap R(x)$$
$$M(\mathfrak{S}) = L(\mathfrak{S}) \cap R(\mathfrak{S}).$$

If $\Gamma = \mathcal{A} \times \mathcal{A}$ then the sets reduces to \mathcal{A} and \mathcal{A} is now called a * algebra.

A concrete partial *-algebra arises as follows. Let \mathcal{D} be a complex pre-Hilbert space, with inner product that is assumed to be linear on the right, and norm $\|\cdot\|$, and completion \mathcal{H} . We denote by $L^+(\mathcal{D}, \mathcal{H})$ the set of all linear maps A, each with range in \mathcal{H} , such that domain $(A) = \mathcal{D}$ and domain $(A^*) \supset \mathcal{D} =$ domain (A). Equipped with the involution $A \mapsto A^+ = A^* \upharpoonright \mathcal{D}$ and the usual notion of addition and scalar multiplication, $L^+(\mathcal{D}, \mathcal{H})$ is a complex involutive linear space given by the set $L^+(\mathcal{D}, \mathcal{H}) = \{A \in L(\mathcal{D}, \mathcal{H}) : \mathcal{D}(A^*) \supset \mathcal{D}\}$

Let $\Gamma = \{(A, B) \in L^+(\mathcal{D}, \mathcal{H}) \times L^+(\mathcal{D}, \mathcal{H}) : B\mathcal{D} \subset domain(A^{+*}), A^*\mathcal{D} \subset domain(B^*)\}$

Then, the relation Γ induces, and is induced by, a partial multiplication " \cdot " on $L^+(\mathcal{D}, \mathcal{H})$ given by $A.B = A^{+*}B$ for $(L^+(\mathcal{D},\mathcal{H}),\Gamma,*,\cdot)$ is therefore a partial * algebra. We denote it by $L^+_W(\mathcal{D},\mathcal{H})$. The set $L^+(\mathcal{D}) = \{A \in L^+(\mathcal{D},\mathcal{H}) : \text{range } A \subset \mathcal{D}, A^*\mathcal{D} \subset \mathcal{D}\}$ is a *-algebra. A subalgebra of $L^+(\mathcal{D})$ is called an **0***- algebra on \mathcal{D} . While a subalgebra of $L^+_W(\mathcal{D},\mathcal{H})$ is called a partial **0***- algebra on \mathcal{D} .

Topologies on $\mathcal{M} \subset L^+_W(\mathcal{D}, \mathcal{H})$ be a partial O*- algebra on \mathcal{D}

- The strong * operator topology is the locally convex topology on M induced by the semi norm p^{*}_ξ(x) defined on M by p^{*}_ξ(x) = ||xξ|| + ||x⁺ξ||, with x ∈ M, ξ ∈ D
- The weak operator topology is induced by the family of semi norms {p_{ξ,η} } defined on M by p_{ξ,η}(x) = ⟨xξ, η⟩, with x ∈ M, ξ, η ∈ D.
- 3. Let $\mathcal{D}^{\infty} = \{\{\xi_n\} \subset \mathcal{D}: \sum (\|\xi_n\|^2 + \|\xi_n\|^2) < \infty, x \in \mathcal{M} \}$, such that $\{\xi_n\}, \{\eta_n\} \subset \mathcal{D}$. The σ -weak operator topology is the locally convex topology induced by

seminorm $\{p_{\xi_n,\eta_n}\}$ defined on \mathcal{M} by $p_{\xi_n,\eta_n}(x) = \sum |\langle x\xi_n,\eta_n \rangle|$, with $x \in \mathcal{M}$.

Let \mathcal{M} be a partial O*- algebra on \mathcal{D} and $\||\xi\||_x = \|x\xi\|$, with $x \in \mathcal{M}$. Let $t_{\mathcal{M}}$ be the locally convex topology on \mathcal{D} generated by the seminorms $\{\|\xi\|_x : x \in \mathcal{M}\}$. We have the following : A partial O*- algebra on \mathcal{D} is called *closed* if the locally convex space $(\mathcal{D}, t_{\mathcal{M}})$ is complete and is called *standard if* \mathcal{M} *is* closed and $\overline{x^+} = x^*$, for each $x \in \mathcal{M}$.

Ideals: Let \mathcal{M} be a partial O*- algebra on \mathcal{D} and \mathcal{B} a subspace of \mathcal{M} . Then \mathcal{B} is a left ideal (resp., a right ideal; resp., an ideal) of \mathcal{M} if $L(\mathcal{M}).\mathcal{B} \subseteq \mathcal{B}$ (resp., $\mathcal{B}.R(\mathcal{M}) \subseteq \mathcal{B}$; resp., \mathcal{B} is both a *left* ideal and *right* ideal).

Bitrace : Let \mathcal{M} be a unital partial O *algebra on domain \mathcal{D} , with unit *e*, and

 $\mathcal{M}_{+} = \{ x \in \mathcal{M} : \langle \xi, x\xi \rangle \ge 0, \forall \xi \in \mathcal{D} \},\$

let the set of all maps $\varphi: \mathcal{M} \times \mathcal{M} \to \mathcal{C}^*$ be

following properties;

a) $\varphi(x, \alpha y) = \alpha \varphi(x, y), \alpha \in \mathbb{C}, x, y \in \mathcal{M}$, with $0 \cdot (\pm \infty) = 0$;

b)
$$\varphi(x, y) = \varphi(\overline{y, x}), \quad x, y \in \mathcal{M},$$

- c) $\varphi(x, y, z) = \varphi(y, x^+, z), \quad x, y, z \in \mathcal{M}, \text{ with } x \in L(y), x^+ \in L(z)$
- d) $\varphi(x,x) \in \mathbb{R}_+ \cup \{+\infty\}, x \in \mathcal{M},$
- e) $\varphi(e, x) \in \mathbb{R}_+ \cup \{+\infty\}, x \in \mathcal{M}_+$
- f) $\varphi(e, x + y) = \varphi(e, x) + \varphi(e, y), \quad x, y \in \mathcal{M}_+$

a member of wgt (\mathcal{M}) will be called a weight on \mathcal{M} . A pair $(\tau, \mathcal{N}_{\tau})$ will be called a *bitrace* on \mathcal{M} provided that

i) $\tau \in wgt(\mathcal{M})$

ii)
$$\tau(x, y) = \tau(y^+, x^+), x, y \in \mathcal{M}$$

- iii) \mathcal{N}_{τ} is an ideal of \mathcal{M}
- iv) The restriction of τ to $\mathcal{N}_{\tau} \times \mathcal{N}_{\tau}$ is a positive sesquilinear form on \mathcal{N}_{τ} .
- * -Representations

A *- representation of a partial *- algebra \mathcal{A} is a * homomorphism of \mathcal{A} into $L_W^+(\mathcal{D}, \mathcal{H})$ satisfying $\pi(e) = 1$ whenever $e \in \mathcal{A}$, that is,

i) π is linear

ii) $x \in L(y)$ in \mathcal{A} implies $\pi(x) \in L(\pi(y))$ and $\pi(x).\pi(y) = \pi(xy)$

iii)
$$\pi(x^*) = (\pi(x))^+$$
 for $x \in \mathcal{A}$

A faithful homomorphism if $x \in \mathcal{A}$ and $\pi(0) = 0 \implies x = 0$. A faithful homomorphism π from $\mathcal{A}_1 \rightarrow \mathcal{A}_2$ whose inverse π^{-1} is homomorphism from $\mathcal{A}_2 \rightarrow \mathcal{A}_1$ is called an *isomorphism*

3 Functionals Determined By A Bitrace On A Partial O*- Algebras

Here we consider two unbounded functionals $\psi_{(.,.)}^{\mathcal{G}_{\tau}^{r}}: \mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r} \to \mathbb{C}^{*}$ and $\psi_{(.,.)}^{\mathcal{G}_{\tau}^{\ell}}: \mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell} \to \mathbb{C}^{*}$, respectively, where, $\mathcal{G}_{\tau}^{r}, \mathcal{G}_{\tau}^{\ell}$, are dense subspaces respectively. The notion of *right* *- representations (resp., *left* *-representations) is introduced. With this notions we defined *right* (resp., *left*) regular functionals. The regularity of the functionals depends on that of the bitrace. We state the properties of such functionals.

Left, Right And Regular Bitrace (Resp., Representation):

Let \mathfrak{M} be a partial O* algebra and $(\tau, \mathcal{N}_{\tau})$ a Bitrace on \mathfrak{M} . We introduce the following two closed ideals related to \mathcal{N}_{τ} (*the definition ideal*) of τ as follows; let x_{r}, x_{ℓ} be nonzero elements of \mathfrak{M} respectively, such that, $x_{r} \neq e$, $x_{\ell} \neq e$, where *e* is the unit element of \mathfrak{M} , then for any two nonzero elements $a \in \mathcal{L}(\mathfrak{M}), \quad b \in \mathcal{R}(\mathfrak{M})$, such that $a \neq e, b \neq e$, the sets

$$\begin{split} \mathcal{N}_{\tau}^{\ell} &= \{ x_{\ell} \in \mathfrak{M} : \tau(a, x_{\ell}, a, x_{\ell}) < \\ \infty, \ a \in \mathcal{L}(\mathfrak{M}) \}, \\ \mathcal{N}_{\tau}^{r} &= \{ x_{r} \in \mathfrak{M} : \tau(x_{r}, b, x_{r}, b) < \\ \infty, \ b \in \mathcal{R}(\mathfrak{M}) \}, \end{split}$$

are called the left (resp., right) *ideals of* \mathfrak{M} . Where $\mathcal{L}(\mathfrak{M})$ is the set of left multiplier of \mathfrak{M} and $\mathcal{R}(\mathfrak{M})$ is the set of right multipliers of \mathfrak{M} . We define quotient maps on these ideals. Hence for the left ideal (resp., right ideal) we have the corresponding subspaces defined as

$$\mathcal{I}_{\tau}^{\ell} = \left\{ x \in \mathcal{N}_{\tau}^{\ell} : \tau(a, x, a, x) = 0, a \in \mathcal{L}(\mathfrak{M}) \right\}$$

 $\mathcal{I}_{\tau}^{r} = \{ x \in \mathcal{N}_{\tau}^{r} : \tau(x, b, x, b) = 0, b \in \mathcal{R}(\mathfrak{M}) \}.$

The quotient maps $\lambda_{\tau}^{\ell} \colon \mathcal{N}_{\tau}^{\ell} \to \mathcal{N}_{\tau}^{\ell} / \mathcal{I}_{\tau}^{\ell}$, $\lambda_{\tau}^{r} \colon \mathcal{N}_{\tau}^{r} \to \mathcal{N}_{\tau}^{r} / \mathcal{I}_{\tau}^{r}$ are given by $\lambda_{\tau}^{\ell}(x_{\ell}) = x_{\ell} + \mathcal{I}_{\tau}^{\ell}$ and $\lambda_{\tau}^{r}(x_{r}) = x_{r} + \mathcal{I}_{\tau}^{r}$. Let $[\lambda_{\tau}^{\ell}(\mathcal{N}_{\tau}^{\ell})], [\lambda_{\tau}^{r}(\mathcal{N}_{\tau}^{r})]$ be the linear spans of $\lambda_{\tau}^{\ell}(\mathcal{N}_{\tau}^{\ell}), \lambda_{\tau}^{r}(\mathcal{N}_{\tau}^{r})$ respectively, and let the action of a sesquilinear form on both the subspaces, be given by,

$$\langle \lambda_{\tau}^{\ell}(x_{\ell}), \lambda_{\tau}^{\ell}(y_{\ell}) \rangle = \tau(x_{\ell}, y_{\ell}),$$

$$x_{\ell}, y_{\ell} \in \mathcal{N}_{\tau}^{\ell}$$

$$(1)$$

$$\langle \lambda_{\tau}^{r}(x_{r}), \lambda_{\tau}^{r}(y_{r}) \rangle = \tau(x_{r}, y_{r}),$$

$$x_{r}, y_{r} \in \mathcal{N}_{\tau}^{r}.$$

$$(2)$$

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 ISSN 2229-5518 Naturally, this inner product induces a Hilbert space completion for the closed spaces $[\lambda_{\tau}^{\ell}(\mathcal{N}_{\tau}^{\ell})], [\lambda_{\tau}^{r}(\mathcal{N}_{\tau}^{r})]$. We denote by $\mathcal{H}^{\ell}_{\tau}, \mathcal{H}^{\mathcal{F}}_{\tau}$ their respective Hilbert spaces. We have the following definitions of the left and right regular Bitrace on M based on the construct given above.

Definition: 1

Let $\mathcal{N}_{\tau}^{\ell} \neq \{0\}$ and let $\mathcal{G}_{\tau}^{\ell}$ be a subspace, such that

- $\mathcal{G}^{\ell}_{\tau} \subset \mathcal{L}(\mathfrak{M}) \cap \mathcal{N}^{\ell}_{\tau}$ (i)
- The linear span $\left[\lambda_{\tau}^{\ell}\left(\mathcal{G}_{\tau}^{\ell}\right)\right]$ of (ii) $\lambda_{\tau}^{\ell}\left(\mathcal{G}_{\tau}^{\ell}\right)$ is dense in $\mathcal{H}_{\tau}^{\ell}$, and is denoted by $\mathcal{D}^{\ell}_{\tau}$
- $\mathcal{G}^{\ell}_{\tau}$ is a core for $\tau_{/\mathcal{D}^{\ell}_{\tau}}$. (iii)
- A bitrace defined on \mathfrak{M} (iv) satisfying $\tau(a_1, x_1, a_2, x_2) =$ $\tau(a_1, a_2, (x_1^+, x_2)) < \infty$, is called a left regular bitrace, $a_1, a_2 \in \mathcal{G}_{\tau}^{\ell}$ where $x_1, x_2 \in \mathfrak{M}$ and with $a_2 \in \mathcal{L}(x_1^+, x_2)$, $x_1^+ \in$ $\mathcal{L}(x_2)_{\mu}$

Definition: 1'

For $\mathcal{N}_{\tau}^{\mathcal{F}} \neq \{0\}$, let $\mathcal{G}_{\tau}^{\mathcal{F}}$ be a subspace, such that

- $\mathcal{G}_{\tau}^{\mathcal{T}} \subset \mathcal{R}(\mathfrak{M}) \cap \mathcal{N}_{\tau}^{\mathcal{T}}$ (i)
- the linear span $[\lambda_{\tau}^{r}(\mathcal{G}_{\tau}^{r})] \equiv$ (ii) \mathcal{D}_{τ}^{r} of λ_{τ}^{r} (\mathcal{G}_{τ}^{r}) is dense in \mathcal{H}_{τ}^{r} and is denoted by \mathcal{D}_{τ}^{r}
- (iii) \mathcal{G}_{τ}^{r} is a core for $\tau_{/\mathcal{D}_{\tau}^{r}}$.
- A bitrace on \mathfrak{M} (iv) satisfying $\tau(w_1, b_1, w_2, b_2) =$ $\tau(b_{1}, (w_2, w_1^+), b_2) < \infty$ is called a right regular bitrace where, $b_1, b_2 \in \mathcal{G}_{\tau}^{\gamma}, w_1, w_2 \in \mathfrak{M}$ with $b_2 \in \mathcal{R} (w_2, w_1^+), w_1^+ \in$ $\mathcal{R}(w_2)$

Definition:2

IJSER © 2015 http://www.ijser.org

А left (resp., right) , regular representation on a partial O*- algebra \mathfrak{M} , denoted by , π^{ℓ}_{τ} (resp., π^{r}_{τ}), is defined

for any $x_1 \in \mathfrak{M}$ and $a_1 \in \mathcal{G}_{\tau}^{\ell}$ (i)

$$\pi_{\tau}^{\ell}(x_{1})\lambda_{\tau}^{\ell}(a_{1}) = \lambda_{\tau}^{\ell}(a_{1}, x_{1}).$$
(3)

(ii) for any $w_1 \in \mathfrak{M}$ and $b_1 \in \mathcal{G}_{\tau}^r$

 $\pi_{\tau}^{r}(w_1)\lambda_{\tau}^{r}(b_1) = \lambda_{\tau}^{r}(w_1,b_1)$

(3)'

Remark:1

If a representation π is both left and right regular with domain then, it is called a regular representation.

Functionals Determined By Bitraces:

The two functionals, $\psi_{(\cdot, , \cdot)}^{\mathcal{G}_{\tau}^{r}}$, $\psi_{(\cdot, , \cdot)}^{\mathcal{G}_{\tau}^{\ell}}$ introduced, called the right functional (resp., left functional) defined on $\mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r}$ (resp., $\mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell}$) are implemented by representations. Let $x \in \mathfrak{M}$ such that $x \neq e$, and let $x_{1} \in \mathcal{L}(\mathcal{G}_{\tau}^{\ell})$ and $x_{2} \in$ $\mathcal{R}(\mathcal{G}_{\tau}^{r})$, then for arbitrary $a \in \mathcal{G}_{\tau}^{\ell}$, $b \in \mathcal{G}_{\tau}^{r}$, let $x \to a.x$, $x \to x.b$ be continuous maps with respect to the locally convex topology t_m (*the graph topology*) such that $a.x \equiv a_1 \in \mathcal{G}_{\tau}^{\ell}$ and $x.b \equiv b_1 \in \mathcal{G}_{\tau}^{r}$, we have $x_1.a_1 \in \mathcal{G}_{\tau}^{\ell}$ and $b_1.x_2 \in \mathcal{G}_{\tau}^{r}$, since $\tau(x_1.a_1, x_1.a_1) < \infty$ and $\tau(b_1.x_2, b_1.x_2) < \infty$. These representations on the dense subspaces $\mathcal{G}_{\tau}^{r}, \mathcal{G}_{\tau}^{\ell}$, denoted by $\pi_{\tau}^{\mathcal{R}(\mathcal{G}_{\tau}^{r})}$ (resp., $\pi_{\tau}^{\mathcal{L}(\mathcal{G}_{\tau}^{\ell})}$), is defined by

 $\pi_{\tau}^{\mathcal{R}(\mathcal{G}_{\tau}^{r})}(x_{2})\lambda_{\tau}^{r}(x,b) = \pi_{\tau}^{\mathcal{R}(\mathcal{G}_{\tau}^{r})}(x_{2})\lambda_{\tau}^{r}(b_{1}) = \lambda_{\tau}^{r}((x,b),x_{2}) = \lambda_{\tau}^{r}(b_{1},x_{2})$ (4)

$$\pi_{\tau}^{\mathcal{L}(\mathcal{G}_{\tau}^{\ell})}(x_1) \lambda_{\tau}^{\ell}(a, x) = \pi_{\tau}^{\mathcal{L}(\mathcal{G}_{\tau}^{\ell})}(x_1) \lambda_{\tau}^{\ell}(a_1) = \lambda_{\tau}^{\ell}(x_1.(a, x)) = \lambda_{\tau}^{\ell}(x_1.a_1)$$
(4)'

for $x_2 \in \mathcal{R}(\mathcal{G}_{\tau}^r)$ (resp., $x_1 \in \mathcal{L}(\mathcal{G}_{\tau}^{\ell})$)

Remark:2

We note that λ_{τ}^{r} , (*resp.*, λ_{τ}^{ℓ}) acts on the elements of $\mathcal{G}_{\tau}^{\ell}$ (resp., \mathcal{G}_{τ}^{r}) by a flip action

given by $\lambda_{\tau}^{\ell}(x_1, a_1) = \lambda_{\tau}^{r}(a_1^+, x_1^+)$,

$$\lambda_{\tau}^{r}(b_{1}, x_{2}) = \lambda_{\tau}^{\ell}(x_{2}^{+}, b_{1}^{+})$$
, respectively.

Definition:3

Using these representations in, (4), (4)' we define the right (resp., left) functionals as mappings $\psi_{(.,.)}^{\mathcal{G}_{\tau}^{T}} : \mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r} \to \mathbb{C}^{*}$ and $\psi_{(.,.)}^{\mathcal{G}_{\tau}^{\ell}} : \mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell} \to \mathbb{C}^{*}$ by, $\psi_{(x_{1},a_{1})}^{\mathcal{G}_{\tau}^{\ell}}(b_{1},x_{2}) =$ $\langle \pi_{\tau}^{\mathcal{L}}(\mathcal{G}_{\tau}^{\ell})(x_{1})\lambda_{\tau}^{\ell}(a.x), \pi_{\tau}^{\mathcal{R}}(\mathcal{G}_{\tau}^{r})(x_{2})\lambda_{\tau}^{r}(x.b)\rangle,$ $x \in \mathfrak{M}$ (5) $\psi_{(b_{1},x_{2})}^{\mathcal{G}_{\tau}^{\ell}}(x_{2})\lambda_{\tau}^{r}(x.b), \pi_{\tau}^{\mathcal{L}}(\mathcal{G}_{\tau}^{\ell})(x_{1})\lambda_{\tau}^{\ell}(a.x)\rangle,$ $x \in \mathfrak{M}$ (5)'

for each $(x_1, a_1) \in \mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell}$ and $(b_1, x_2) \in \mathcal{G}_{\tau}^r \times \mathcal{G}_{\tau}^r$. The name right (resp., left) functionals arises from the representation appearing on the right. The sesquilinear forms are assumed to be linear on the right . In simple terms the functionals are given by,

$$\begin{split} \psi_{(x_1,a_1)}^{\mathcal{G}_{\tau}^r}(b_1,x_2) &= \langle \lambda_{\tau}^r(a_1^+,x_1^+), \lambda_{\tau}^r(b_1,x_2) \rangle \\ &= \tau(a_1^+,x_1^+,b_1,x_2) < \infty \\ \psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^\ell}(x_1,a_1) &= \langle \lambda_{\tau}^\ell(x_2^+,b_1^+), \lambda_{\tau}^\ell(x_1,a_1) \rangle \end{split}$$

$$=\tau(x_{2}^{+}, b_{1}^{+}, x_{1}, a_{1}) < \infty$$
(6)

Remark: 3 For the unit element, we have $\psi_{(x_1,a_1)}^{\mathcal{G}_{\tau}^r}(e,e) \equiv \psi_{(x_1,a_1)}^{\mathcal{G}_{\tau}^r};$

$$\psi_{(b_1,x_2)}^{\mathcal{G}^{\ell}_{\tau}}(e,e) \equiv \psi_{(b_1,x_2)}^{\mathcal{G}^{\ell}_{\tau}}$$

Definition:4

A left functional $\psi^{\mathcal{G}_{\tau}^{\ell}}$, is a *left regular* functional if for any $a_1, a_2 \in \mathcal{G}_{\tau}^{\ell}$, and $y_1, y_2 \in \mathcal{R}(\mathcal{G}_{\tau}^{\ell})$, with $y_1^+ \in \mathcal{L}(y_2)$, $(y_1^+, y_2) \in \mathcal{R}(a_2)$ the functional is of the form $\psi_{a_1,e}^{\mathcal{G}_{\tau}^{\ell}}(e, a_2, (y_1^+, y_2)) < \infty$, whenever the defining bitrace is also left regular. Similarly we have the *right regular* functional to be of the form $\psi_{b_1,e}^{\mathcal{G}_{\tau}^{T}}(e, (x_2, x_1^+), b_2) < \infty$, where $b_1, b_2 \in$ \mathcal{G}_{τ}^{r} , and $x_1, x_2 \in \mathcal{L}(\mathcal{G}_{\tau}^{r})$,

Definition:5

We called ψ a regular functional if for

any,
$$a_1, a_2 \in \mathcal{G}_{\tau} \subset \mathcal{M}(\mathfrak{M}) \cap \mathcal{N}_{\tau}$$
, and

 $y_1, y_2 \in \mathcal{M}(\mathcal{G}_{\tau}), \text{ with } (y_1, y_2^+) \in \mathcal{L}(a_2^+), (y_1^+, y_2) \in \mathcal{R}(a_2)$

we have $\psi_{a_1,e}^{\mathcal{G}_{\tau}^{\ell}}(e, a_2.(y_1^+, y_2)) =$ $\psi_{a_1^+,e}^{\mathcal{G}_{\tau}^{r}}(e, (y_1, y_2^+), a_2^+) < \infty,$

The following lemma give the relations between the left and right functionals.

Lemma 1

(a)
$$\psi_{y_1^+,a_1^+}^{\mathcal{G}^\ell_\tau}(a_2,y_2)$$
 is a left regular

functional, whenever τ is left regular

(b)

$$\psi_{x_1,a_1}^{\mathcal{G}_{\tau}^r}(b_1,x_2) = \psi_{b_1^+,x_2^+}^{\mathcal{G}_{\tau}^\ell}(a_1^+,x_1^+)$$

(a) Let
$$a_1, a_2 \in \mathcal{G}_{\tau}^{\ell}, \quad y_1, y_2 \in \mathcal{R}(\mathcal{G}_{\tau}^{\ell}),$$
 and $(y_1^+, y_2) \in \mathcal{R}(a_2).$
since τ is assumed to be left regular,
we need only to show that
 $\psi_{y_1^+, a_1^+}^{\mathcal{G}_{\tau}^{\ell}}(a_2, y_2) = \psi_{a_1}^{\mathcal{G}_{\tau}^{\ell}}(a_2, (y_1^+, y_2)),$
 $\psi_{y_1^+, a_1^+}^{\mathcal{G}_{\tau}^{\ell}}(a_2, y_2) = \langle \lambda_{\tau}^r(y_1^+, a_1^+), \lambda_{\tau}^{\ell}(a_2, y_2) \rangle$

$$\langle \lambda_{\tau}^{\ell}(a_1, y_1), \lambda_{\tau}^{\ell}(a_2, y_2) \rangle$$

$$\langle \lambda_{\tau}^{\ell}(a_1, e), \lambda_{\tau}^{\ell}(a_2, (y_1^+, y_2)) \rangle$$

$$= \psi_{a_1.e}^{\mathcal{G}_{\tau}^{\ell}}(a_2.(y_1^+, y_2) = \psi_{a_1}^{\mathcal{G}_{\tau}^{\ell}}(a_2.(y_1^+, y_2))$$

(b)

$$\psi^{\mathcal{G}^r_t}_{(x_1,a_1)}(b_1,x_2) = \langle \lambda^\ell_\tau(x_1,a_1),\lambda^r_\tau(b_1,x_2) \rangle$$

$$= \langle \lambda_\tau^r(a_1^+, x_1^+), \lambda_\tau^r(b_1, x_2) \rangle$$

Proof;

=

$$= \tau(a_1^{+}, x_1^{+}, b_1, x_2)$$
$$= \tau(x_2^{+}, b_1^{+}, x_1, a_1)$$
$$= \langle \lambda_{\tau}^r(x_2^{+}, b_1^{+}), \lambda_{\tau}^r(x_1, a_1), \rangle$$

$$= \langle \lambda_{\tau}^{r}(x_{2}^{+}, b_{1}^{+}), \lambda_{\tau}^{\ell}(a_{1}^{+}, x_{1}^{+}), \rangle =$$

$$\psi_{(b_{1}^{+}, x_{2}^{+})}^{\mathcal{G}_{\tau}^{\ell}}(a_{1}^{+}, x_{1}^{+})$$

Remark:4

From this lemma, we have the following relations,

$$\psi_{(y_1^+,a_1^+)}^{\mathcal{G}_{\tau}^{\ell}}(a_2,y_2) = \psi_{(y_2^+,a_2^+)}^{\mathcal{G}_{\tau}^{r}}(a_1,y_1^-),$$
(7)

$$\psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^{\ell}}(x_1,a_1) = \psi_{(x_1^+,b_1^+)}^{\mathcal{G}_{\tau}^{r}}(a_1^+,x_2^+).$$

These expressions are analogous to commutations relations of the right and left representations on a generalized Hilbert algebras: This provides us with the following;

Proposition:1

If τ is a regular bitrace on \mathcal{G}_{τ} , then ψ is a regular functional on \mathcal{G}_{τ}

Suppose that τ is regular on $\mathcal{G}_{\tau} \subset \mathcal{M}(\mathfrak{M}) \cap \mathcal{N}_{\tau}$, to show that the functional is regular we need only to show that $\psi_{a_1}^{\mathcal{G}_{\tau}^{\ell}}(a_2.(y_1^+.y_2)) = \psi_{a_1}^{\mathcal{G}_{\tau}^{r}}((y_1.y_2^+).a_2^+) < \infty.$

Let
$$(y_2, y_1^+) \in \mathcal{L}(a_1)$$
, and
 $(y_2, y_1^+)^+ \in \mathcal{L}(a_2^+)$
 $\psi_{a_1}^{G_t^\ell}(a_2, (y_1^+, y_2)) =$
 $\psi_{a_1..e}^{G_t^\ell}(a_2, (y_1^+, y_2)) =$
 $(\lambda_\tau^r(a_1..e), \lambda_\tau^\ell((a_2, (y_1^+, y_2))))$

 $\langle \lambda^\ell_\tau(a_1^+,e),\lambda^\ell_\tau((a_2,(y_1^+,y_2)))\rangle$

 $\tau(a_1^+, a_2.(y_1^+, y_2))$

$$\tau(a_1^+, y_1, a_2, y_2)$$

$$\tau(y_2^+, a_2^+, y_1^+, a_1)$$

$$\tau(a_2^+, (y_2, y_1^+), a_1)$$

IJSER © 2015 http://www.ijser.org =

=

=

=

International Journal of Scientific & Engineering Research, Volume 6, Issue 6, June-2015 ISSN 2229-5518

$$= = \{\lambda_{\tau}^{\ell}(b_{1}, x_{2}), \lambda_{\tau}^{\ell}(x_{1}, a_{1})\}$$

$$\tau((y_{2}, y_{1}^{+})^{+}, a_{2}^{+}, a_{1})$$

$$= = (\lambda_{\tau}^{\ell}(x_{2}^{+}, b_{1}^{+}), \lambda_{\tau}^{\ell}(x_{1}, a_{1}))$$

$$\tau(a_{1}^{+}, a_{2}, (y_{2}, y_{1}^{+}))$$

$$= \tau(x_{1}^{+}, b_{1}^{+}, x_{2}, a_{1})$$

$$(\lambda_{\tau}^{\ell}(a_{1}^{+}), \lambda_{\tau}^{r}((y_{1}, y_{2}^{+}), a_{2}^{+}))$$

$$= \tau(x_{1}^{+}, b_{1}^{+}, x_{2}, a_{1})$$

$$(\lambda_{\tau}^{\ell}(a_{1}^{+}), \lambda_{\tau}^{r}((y_{1}, y_{2}^{+}), a_{2}^{+}))$$

$$= (\lambda_{\tau}^{\ell}(x_{1}^{+}, b_{1}^{+}), \lambda_{\tau}^{\ell}(a_{1}^{+}, x_{2}^{+}))$$

$$= (\lambda_{\tau}^{\ell}(x_{1}^{+}, b_{1}^{+}), \lambda_{\tau}^{\ell}(b_{1}^{+}), \lambda_{\tau}^{\ell}(b_{1}^{+}), \lambda_{\tau}^{\ell}(b_{1}^{+}))$$

$$= (\lambda_{\tau}^{\ell}(x_{1}^{+}, b_{1}^{+}), \lambda_{\tau}^{\ell}(b_{1}^{+}), \lambda_{\tau}^{\ell}($$

The proof is based on noting that commutations is implied by the relation,

$$\psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^{\ell}}(x_1,a_1) = \psi_{(x_1^+,b_1^+)}^{\mathcal{G}_{\tau}^{r}}(a_1^+,x_2^+).$$

Let $x_2 \in \mathcal{R}(\mathcal{G}_{\tau}^r) \cap \mathcal{L}(\mathcal{G}_{\tau}^{\ell})$, $x_1 \in \mathcal{L}(b_1^+)$ and $(x_2.a_1) \in \mathcal{G}_{\tau}^{\ell}$, we have,

$$\psi_{(b_1,x_2)}^{\mathcal{G}^{\ell}_{\tau}}(x_1,a_1) =$$

$$\langle \pi_{\tau}^{\mathcal{R}(\mathcal{G}^{r}_{\tau})}(x_2)\lambda_{\tau}^{r}(b_1), \pi_{\tau}^{\mathcal{L}(\mathcal{G}^{\ell}_{\tau})}(x_1)\lambda_{\tau}^{\ell}(a_1)\rangle$$

The functional $\psi_{(b_1,x_2)}^{\mathcal{G}_t^\ell}$ is an idempotent by composition that is,

$$\psi_{(b_1,x_2)}^{\mathcal{G}_t^\ell} \circ \psi_{(b_1,x_2)}^{\mathcal{G}_t^\ell} = \psi_{(b_1,x_2)}^{\mathcal{G}_t^\ell}(x_1,a_1).$$

Proof:

$$\begin{split} \psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^{\ell}} \circ \psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^{\ell}}(x_1,a_1) \\ &= \psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^{\ell}} \left(e, \psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^{\ell}}(x_1,a_1) \right) \end{split}$$

$$=\psi^{\mathcal{G}_{\tau}^{r}}_{(x_{1}^{+},b_{1}^{+})}\left(e,\psi^{\mathcal{G}_{\tau}^{r}}_{(x_{1}^{+},b_{1}^{+})}(a_{1}^{+},x_{2}^{+})\right)$$

$$= \langle \pi_{\tau}^{\mathcal{L}(\mathcal{G}_{\tau}^{\ell})}(x_{1}^{+})\lambda_{\tau}^{\ell}(b_{1}^{+}), \ \pi_{\tau}^{\mathcal{R}(\mathcal{G}_{\tau}^{r})} \circ$$

$$\psi_{(x_{1}^{+},b_{1}^{+})}^{\mathcal{G}_{\tau}^{r}}(a_{1}^{+},x_{2}^{+})\lambda_{\tau}^{r}(e,e)\rangle$$

$$= \langle \lambda_{\tau}^{\ell}(x_{1}^{+},b_{1}^{+}), \ \langle \lambda_{\tau}^{\ell}(x_{1}^{+},b_{1}^{+}), \ \pi_{\tau}^{\mathcal{R}(\mathcal{G}_{\tau}^{r})} \circ$$

$$\lambda_{\tau}^{r}(a_{1}^{+},x_{2}^{+}) \rangle \lambda_{\tau}^{r}(e,e)\rangle \qquad (**)$$

note that, for $\lambda_{\tau}^{r}(e, e) = I$, from definition we have,

$$\pi_{\tau}^{\mathcal{R}(\mathcal{G}_{\tau}^{r})} \circ \lambda_{\tau}^{r}(a_{1}^{+}.x_{2}^{+})$$

$$= \pi_{\tau}^{\mathcal{R}(\mathcal{G}_{\tau}^{r})} (\lambda_{\tau}^{r}(a_{1}^{+}.x_{2}^{+})) \lambda_{\tau}^{r}(e.e) =$$

$$\lambda_{\tau}^{r}(e.e) \lambda_{\tau}^{r}(a_{1}^{+}.x_{2}^{+}) = \lambda_{\tau}^{r}(a_{1}^{+}.x_{2}^{+}),$$
hence eqn. (**) becomes,

$$\begin{split} \psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^{\ell}} \circ \psi_{(b_1,x_2)}^{\mathcal{G}_{\tau}^{\ell}}(x_1,a_1) &= \langle \lambda_{\tau}^{\ell}(x_1^+,b_1^+), \\ \langle \lambda_{\tau}^{\ell}(x_1^+,b_1^+), \lambda_{\tau}^{r}(a_1^+,x_2^+) \rangle \lambda_{\tau}^{r}(e,e) \rangle, \end{split}$$

=

 $\langle \lambda_{\tau}^{\ell}(x_1^+, b_1^+), \lambda_{\tau}^{r}(a_1^+, x_2^+) \rangle \langle \lambda_{\tau}^{\ell}(x_1^+, b_1^+), \lambda_{\tau}^{r}(e, e) \rangle$

$$= \psi_{(x_1^+, b_1^+)}^{\mathcal{G}_{\tau}^r}(a_1^+, x_2^+) \ \psi_{(x_1^+, b_1^+)}^{\mathcal{G}_{\tau}^r}(e, e)$$
$$= \psi_{(b_1, x_2)}^{\mathcal{G}_{\tau}^\ell}(x_1, a_1)$$

Summary of some properties of Functionals determined By Bitraces:

The functionals $\psi_{(.,.)}^{\mathcal{G}_{\tau}^{r}}$ and $\psi_{(.,.)}^{\mathcal{G}_{\tau}^{\ell}}$ called the right (resp., left) functional defined on $\mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r}$ (resp., $\mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell}$) satisfies the following properties;

(i) $\psi_{y_1^+,a_1^+}^{\mathcal{G}_{\tau}^\ell}(a_2,y_2)$ is a left regular

functional, whenever τ is left regular

(ii)

$$\psi_{x_{1},a_{1}}^{\mathcal{G}_{\tau}^{r}}(b_{1},x_{2}) = \psi_{b_{1}^{+},x_{2}^{+}}^{\mathcal{G}_{\tau}^{\ell}}(a_{1}^{+},x_{1}^{+})$$
$$\psi_{(y_{1}^{+},a_{1}^{+})}^{\mathcal{G}_{\tau}^{\ell}}(a_{2},y_{2}) =$$
$$\psi_{(y_{2}^{+},a_{2}^{+})}^{\mathcal{G}_{\tau}^{r}}(a_{1},y_{1}^{-}),$$

(Commutations relations)

(iii) If τ is a regular bitrace on \mathcal{G}_{τ} , then ψ is a regular functional on \mathcal{G}_{τ} .

(iv) For
$$a_1 \in \mathcal{G}^{\ell}_{\tau}$$
, $b_1 \in \mathcal{G}^{r}_{\tau}$, we
have, $\pi^{\mathcal{L}(\mathcal{G}^{\ell}_{\tau})}_{\tau}(\mathcal{G}^{\ell}_{\tau})_{\sigma} \subset \pi^{\mathcal{R}(\mathcal{G}^{r}_{\tau})}_{\tau}(\mathcal{G}^{r}_{\tau})'_{\sigma}$.

(v)
$$\psi_{(b_1,x_2)}^{\mathcal{G}_t^{\ell}} \circ \psi_{(b_1,x_2)}^{\mathcal{G}_t^{\ell}}(x_1,a_1) = \psi_{(b_1,x_2)}^{\mathcal{G}_t^{\ell}}(x_1,a_1).$$

References:

IJSER © 2015 http://www.ijser.org (1) G.O.S. Ekhaguere, "Bitrace on

Partial O*-Algebras", International

Journal of Mathematics and

Mathematical Sciences, volume

2007, Article ID 43013, 19 pages.

(2) J.P. Antoine, A. Inoue, C. Trapani,

Partial *- algebras of closable

operators. A review, Rev. Math.

Phys. 8 (1996) pp 1-42.

IJSER