Functionals related to a to the Bitrace on Partial *O -Algebras

Yusuf Ibrahim
Nigerian Defence Academy,
Mathematics /Comp. Sci. Department, Kaduna, Nigeria

* Email address : yusufian68@yahoo.com

Abstract

We consider functionals defined on some certain subspaces of a partial O^{*}-algebra \mathfrak{M} (i.e, a standard, unital, subalgebra, of a partial ${ }^{*}$ - algebras $\mathcal{L}_{\mathrm{w}}^{+}(\mathcal{D}, \mathcal{H})$). On these subspaces we define the right *-representations(resp., left *--representations) and using such representations we introduce the right (resp., left) regular functionals related to the Bitrace. Simple relations are given for such functionals.

Key words: partial *- algebras $\mathcal{L}_{w}^{+}(\mathcal{D}, \mathcal{H})$, Bitrace, regular functionals, *-representations.

1. Introduction:

In recent years algebras of unbounded operators have been studied by many mathematicians. In the algebraic formulation of quantum field theory or quantum statistical mechanics, the $C^{*}-$ algebraic setting is however too restrictive since in general the observables of a physical system are unbounded linear operators. The $C^{*}-$ algebraic approach to quantum theory is a rigid scheme to include in its framework all objects of physical interest and this has led to several possible generalizations namely quasi* algebras, partial *- algebras and so on. Here we consider one of such
generalization called the partial \boldsymbol{O}^{*} algebras $\mathfrak{M} . \quad$,Ekhaguere (2007) introduced an unbounded bitrace on a partial O^{*}-algebra \mathfrak{M}. The unbounded bitrace played an important role in the classification of partial O^{*} - algebra \mathfrak{M}. Here we consider two unbounded functionals $\psi_{(., .)}^{\mathcal{G}_{\tau}^{r}}: \mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r} \rightarrow \mathbb{C}^{*}$ and $\psi_{(., .)}^{\mathcal{G}_{\tau}^{\ell}}: \mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell} \rightarrow \mathbb{C}^{*}, \quad$ respectively, where, $\mathcal{G}_{\tau}^{r}, \mathcal{G}_{\tau}^{\ell}$, are dense subspaces respectively. The notion of right *representations (resp., left *-representations) is introduced. With this notions we define right (resp., left) regular functionals related to such bitrace defined on partial O^{*} - algebra
\mathfrak{M}. We state the properties of such functionals.

2. Preliminaries on Partial *-Algebra:

The basic structure is a quadruplet $(\mathcal{A}, \Gamma, *$, -). This comprises of an involutive complex linear space \mathcal{A} with an involution * , and a relation $\Gamma \subseteq \mathcal{A} \times \mathcal{A}$ on \mathcal{A}, with a partial multiplication "• " on \mathcal{A}, such that

1) $(x, y) \in \Gamma \Leftrightarrow x . y \in \mathcal{A}$
2) $(x, y) \in \Gamma \Leftrightarrow\left(y^{*}, x^{*}\right) \in \Gamma$, and $(x . y)^{*}=y^{*} \cdot x^{*} ;$
3) $(x, y) \in \Gamma \quad$ and $\quad(x, z) \in \Gamma \Rightarrow$ $(x, \alpha y+\beta z) \in \Gamma$ and then

$$
x .(\alpha y+\beta z)=\alpha(x . y)+\beta(x . z)
$$

A partial *-algebra is in general, non-
associative thereby making the study largely dependent on several classes of multipliers introduced as follows.For a partial algebra $(\mathcal{A}, \Gamma, *, \cdot)$ for a subset $\mathfrak{S} \subseteq \mathcal{A}$ and a point $x \in \mathcal{A}$, let $\quad L(x)=$ $\{x \in \mathcal{A}:(y, x) \in \Gamma\}$ and $R(x)=$ $\{y \in \mathcal{A}:(x, y) \in \Gamma\}$

$$
L(\Im)=\cap\{x \in \mathcal{A}:(y, x) \in \Gamma\}=\cap L(x)
$$

$$
\begin{aligned}
& R(\Im)=\cap\{y \in \mathcal{A}:(x, y) \in \Gamma\}=\cap R(x) \\
& M(\Im)=L(\Im) \cap R(\Im) .
\end{aligned}
$$

If $\Gamma=\mathcal{A} \times \mathcal{A}$ then the sets reduces to \mathcal{A} and \mathcal{A} is now called a * algebra.

A concrete partial *-algebra arises as follows. Let \mathcal{D} be a complex pre-Hilbert space, with inner product that is assumed to be linear on the right, and norm $\|\cdot\|$, and completion \mathcal{H}. We denote by $L^{+}(\mathcal{D}, \mathcal{H})$ the set of all linear maps A, each with range in \mathcal{H}, such that domain $(A)=\mathcal{D}$ and domain $\left(A^{*}\right) \supset \mathcal{D}=$ domain (A). Equipped with the involution $A \mapsto A^{+}=A^{*} \upharpoonright \mathcal{D}$ and the usual notion of addition and scalar multiplication, $L^{+}(\mathcal{D}, \mathcal{H})$ is a complex involutive linear space given by the set $L^{+}(\mathcal{D}, \mathcal{H})=\left\{A \in L(\mathcal{D}, \mathcal{H}): \mathcal{D}\left(A^{*}\right) \supset \mathcal{D}\right\}$

Let $\quad \Gamma=\left\{(A, B) \in L^{+}(\mathcal{D}, \mathcal{H}) \times\right.$ $L^{+}(\mathcal{D}, \mathcal{H}): \mathrm{BD} \subset \operatorname{domain}\left(A^{+*}\right), A^{*} \mathcal{D} \subset$ $\left.\operatorname{domain}\left(B^{*}\right)\right\}$

Then, the relation Γ induces, and is induced by, a partial multiplication "• " on $L^{+}(\mathcal{D}, \mathcal{H})$ given by $A . B=A^{+*} B \quad$ for
$(A, B) \in L^{+}(\mathcal{D}, \mathcal{H})$. The quadruplet
$\left(L^{+}(\mathcal{D}, \mathcal{H}), \Gamma, *, \cdot\right)$ is therefore a partial * algebra. We denote it by $L_{W}^{+}(\mathcal{D}, \mathcal{H})$.The set $L^{+}(\mathcal{D})=\left\{A \in L^{+}(\mathcal{D}, \mathcal{H}):\right.$ range $A \subset \mathcal{D}$, $\left.A^{*} \mathcal{D} \subset \mathcal{D}\right\}$ is a *-algebra. A subalgebra of $L^{+}(\mathcal{D})$ is called an \boldsymbol{O}^{*} - algebra on \mathcal{D}. While a subalgebra of $L_{W}^{+}(\mathcal{D}, \mathcal{H})$ is called a partial \boldsymbol{O}^{*} - algebra on \mathcal{D}.

Topologies on $\mathcal{M} \subset L_{W}^{+}(\mathcal{D}, \mathcal{H})$ be a partial O*- algebra on \mathcal{D}

1. The strong * operator topology is the locally convex topology on \mathcal{M} induced by the semi norm $p_{\xi}^{*}(x)$ defined on \mathcal{M} by $p_{\xi}^{*}(x)=\|x \xi\|+$ $\left\|x^{+} \xi\right\|$, with $x \in \mathcal{M}, \xi \in \mathcal{D}$
2. The weak operator topology is induced by the family of semi norms $\left\{p_{\xi, \eta}\right\}$ defined on \mathcal{M} by $p_{\xi, \eta}(x)=$ $\langle x \xi, \eta\rangle$, with $x \in \mathcal{M}, \xi, \eta \in \mathcal{D}$.
3. Let $\mathcal{D}^{\infty}=\left\{\left\{\xi_{n}\right\} \subset \mathcal{D}: \sum\left(\left\|\xi_{n}\right\|^{2}+\right.\right.$ $\left.\left.\left\|\xi_{n}\right\|^{2}\right)<\infty, x \in \mathcal{M}\right\}$, such that $\left\{\xi_{n}\right\},\left\{\eta_{n}\right\} \subset \mathcal{D}$. The $\quad \sigma$-weak operator topology is the locally convex topology induced by
seminorm $\left\{p_{\xi_{n}, \eta_{n}}\right\}$ defined on \mathcal{M}
by $\quad p_{\xi_{n}, \eta_{n}}(x)=\sum\left|\left\langle x \xi_{n}, \eta_{n}\right\rangle\right|$, with $x \in \mathcal{M}$.

Let \mathcal{M} be a partial O^{*} - algebra on \mathcal{D} and $\|\xi\|_{x}=\|x \xi\|$, with $x \in \mathcal{M}$. Let $t_{\mathcal{M}}$ be the locally convex topology on \mathcal{D} generated by the seminorms $\left\{\|\xi\|_{x}: x \in\right.$ \mathcal{M} \}. We have the following: A partial O*- algebra on \mathcal{D} is called closed if the locally convex space ($\mathcal{D}, t_{\mathcal{M}}$) is complete and is called standard if \mathcal{M} is closed and $\overline{x^{+}}=x^{*}$, for each $x \in \mathcal{M}$.

Ideals: Let \mathcal{M} be a partial O*- algebra $^{\text {on }}$ on \mathcal{D} and \mathcal{B} a subspace of \mathcal{M}. Then \mathcal{B} is a left ideal (resp., a right ideal; resp., an ideal) of \mathcal{M} if $L(\mathcal{M}) . \mathcal{B} \subseteq \mathcal{B}$ (resp., $\mathcal{B} . R(\mathcal{M}) \subseteq \mathcal{B} ;$ resp., \mathcal{B} is both a left ideal and right ideal).

Bitrace : Let \mathcal{M} be a unital partial O^{*} algebra on domain \mathcal{D}, with unit e, and

$$
\mathcal{M}_{+}=\{x \in \mathcal{M}:\langle\xi, x \xi\rangle \geq 0, \forall \xi \in \mathcal{D}\},
$$ let the set of all maps $\varphi: \mathcal{M} \times \mathcal{M} \rightarrow C^{*}$ be

denoted by wgt (\mathcal{M}) satisfying the
following properties;
a) $\varphi(x, \alpha y)=\alpha \varphi(x, y), \alpha \in \mathbb{C}, x, y \in$ \mathcal{M}, with $0 \cdot(\pm \infty)=0 ;$
b) $\varphi(x, y)=\varphi(\bar{y}, \bar{x}), \quad x, y \in \mathcal{M}$,
c) $\varphi(x . y, z)=\varphi\left(y, x^{+} . z\right), \quad x, y, z \in$ \mathcal{M}, with $x \in L(y), x^{+} \in L(z)$
d) $\varphi(x, x) \in \mathbb{R}_{+} \cup\{+\infty\}, \quad x \in \mathcal{M}$,
e) $\varphi(e, x) \in \mathbb{R}_{+} \cup\{+\infty\}, \quad x \in \mathcal{M}_{+}$
f) $\varphi(e, x+y)=\varphi(e, x)+$ $\varphi(e, y), \quad x, y \in \mathcal{M}_{+}$

A *- representation of a partial *- algebra
\mathcal{A} is a * homomorphism of \mathcal{A} into
$L_{W}^{+}(\mathcal{D}, \mathcal{H})$ satisfying $\pi(e)=1$ whenever $e \in \mathcal{A}$, that is,
i) π is linear
ii) $\quad x \in L(y) \quad$ in \mathcal{A} implies $\pi(x) \in$ $L(\pi(y))$ and $\pi(x) . \pi(y)=\pi(x y)$
iii) $\quad \pi\left(x^{*}\right)=(\pi(x))^{+}$for $x \in \mathcal{A}$

A faithful homomorphism if $x \in \mathcal{A}$ and $\pi(0)=0 \quad \Rightarrow x=0 . \quad$ A faithful homomorphism $\quad \pi$ from $\mathcal{A}_{1} \rightarrow \mathcal{A}_{2}$ whose inverse π^{-1} is homomorphism from $\mathcal{A}_{2} \rightarrow \mathcal{A}_{1}$ is called an isomorphism
a member of wgt (\mathcal{M}) will be called a
weight on \mathcal{M}. A pair $\left(\tau, \mathcal{N}_{\tau}\right)$ will be called a bitrace on \mathcal{M} provided that
i) $\quad \tau \in \operatorname{wgt}(\mathcal{M})$
ii) $\quad \tau(x, y)=\tau\left(y^{+}, x^{+}\right), x, y \in \mathcal{M}$
iii) $\quad \mathcal{N}_{\tau}$ is an ideal of \mathcal{M}
iv) The restriction of τ to $\mathcal{N}_{\tau} \times \mathcal{N}_{\tau}$ is a positive sesquilinear form on \mathcal{N}_{τ}.

* -Representations

3 Functionals Determined By A Bitrace On A Partial O*- Algebras

Here we consider two unbounded functionals $\psi_{(., .)}^{G_{\tau}^{r}}: \mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r} \rightarrow \mathbb{C}^{*}$ and $\psi_{(., .)}^{\mathcal{G}_{\tau}^{\ell}}: \mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell} \rightarrow \mathbb{C}^{*}, \quad$ respectively, where, $\mathcal{G}_{\tau}^{r}, \mathcal{G}_{\tau}^{\ell}$, are dense subspaces respectively. The notion of right *-
representations (resp., left *-- are called the left (resp., right) ideals of representations) is introduced. With this notions we defined right (resp., left) regular functionals. The regularity of the functionals depends on that of the bitrace. We state the properties of such functionals.

Left , Right And Regular Bitrace

(Resp., Representation):

Let \mathfrak{M} be a partial O^{*} algebra and (τ, \mathcal{N}_{τ}) a Bitrace on \mathfrak{M}. We introduce the following two closed ideals related to \mathcal{N}_{τ} (the definition ideal) of τ as follows; let x_{r}, x_{ℓ} be nonzero elements of \mathfrak{M} respectively, such that, $x_{r} \neq e$, $x_{\ell} \neq e$, where e is the unit element of \mathfrak{M}, then for any two nonzero elements $a \in \mathcal{L}(\mathfrak{M}), \quad b \in \mathcal{R}(\mathfrak{M})$, such that $a \neq e, b \neq e, \quad$ the sets

$$
\mathcal{N}_{\tau}^{\ell}=\left\{x_{\ell} \in \mathfrak{M}: \tau\left(a . x_{\ell}, a . x_{\ell}\right)<\right.
$$

$\infty, a \in \mathcal{L}(\mathfrak{M})\}$,
$\mathcal{N}_{\tau}^{\mathcal{r}}=\left\{x_{r} \in \mathfrak{M}: \tau\left(x_{r} . b, x_{r} . b\right)<\right.$
$\infty, \quad b \in \mathcal{R}(\mathfrak{M})\}$,
\mathfrak{M}. Where $\mathcal{L}(\mathfrak{M})$ is the set of left multiplier of \mathfrak{M} and $\mathcal{R}(\mathfrak{M})$ is the set of right multipliers of \mathfrak{M}. We define quotient maps on these ideals. Hence for the left ideal (resp., right ideal) we have the corresponding subspaces defined as
$\mathcal{J}_{\tau}^{\ell}=\left\{x \in \mathcal{N}_{\tau}^{\ell}: \tau(a . x, a . x)=0, a \in\right.$ $\mathcal{L}(\mathfrak{M})\}$
$\mathcal{J}_{\tau}^{\mathcal{r}}=\left\{x \in \mathcal{N}_{\tau}^{\mathcal{r}}: \tau(x . b, x . b)=0, b \in\right.$ $\mathcal{R}(\mathfrak{M})\}$.

The quotient maps $\lambda_{\tau}^{\ell}: \mathcal{N}_{\tau}^{\ell} \rightarrow \mathcal{N}_{\tau}^{\ell} / \mathcal{J}_{\tau}^{\ell}$, $\lambda_{\tau}^{\gamma}: \mathcal{N}_{\tau}^{\gamma} \rightarrow \mathcal{N}_{\tau}^{\sim} / \mathcal{J}_{\tau}^{\mathcal{}} \quad$ are given by $\lambda_{\tau}^{\ell}\left(x_{\ell}\right)=x_{\ell}+\mathcal{J}_{\tau}^{\ell}$ and $\lambda_{\tau}^{r}\left(x_{r}\right)=x_{r}+\mathcal{J}_{\tau}^{r}$. Let $\left[\lambda_{\tau}^{\ell}\left(\mathcal{N}_{\tau}^{\ell}\right)\right],\left[\lambda_{\tau}^{r}\left(\mathcal{N}_{\tau}^{r}\right)\right]$ be the linear spans of $\lambda_{\tau}^{\ell}\left(\mathcal{N}_{\tau}^{\ell}\right), \quad \lambda_{\tau}^{r}\left(\mathcal{N}_{\tau}^{r}\right)$ respectively, and let the action of a sesquilinear form on both the subspaces, be given by,

$$
\left\langle\lambda_{\tau}^{\ell}\left(x_{\ell}\right), \lambda_{\tau}^{\ell}\left(y_{\ell}\right)\right\rangle=\tau\left(x_{\ell}, y_{\ell}\right),
$$

$$
\begin{equation*}
x_{\ell}, y_{\ell} \in \mathcal{N}_{\tau}^{\ell} \tag{1}
\end{equation*}
$$

$$
\left\langle\lambda_{\tau}^{r}\left(x_{r}\right), \lambda_{\tau}^{r}\left(y_{r}\right)\right\rangle=\tau\left(x_{r}, y_{r}\right),
$$

$$
\begin{equation*}
x_{r}, y_{r} \in \mathcal{N}_{\tau}^{r} \tag{2}
\end{equation*}
$$

by $\mathcal{H}_{\tau}^{\ell}, \mathcal{H}_{\tau}^{\gamma}$ their respective Hilbert spaces. We have the following definitions of the left and right regular Bitrace on \mathfrak{M} based on the construct given above.

Definition: 1

Let $\mathcal{N}_{\tau}^{\ell} \neq\{0\}$ and let $\mathcal{G}_{\tau}^{\ell}$ be a subspace, such that
(i) $\quad \mathcal{G}_{\tau}^{\ell} \subset \mathcal{L}(\mathfrak{M}) \cap \mathcal{N}_{\tau}^{\ell}$
(ii) The linear span $\left[\lambda_{\tau}^{\ell}\left(\mathcal{G}_{\tau}^{\ell}\right)\right]$ of $\lambda_{\tau}^{\ell}\left(\mathcal{G}_{\tau}^{\ell}\right)$ is dense in $\mathcal{H}_{\tau}^{\ell}$, and is denoted by $\mathcal{D}_{\tau}^{\ell}$
(iii) $\quad \mathcal{G}_{\tau}^{\ell}$ is a core for $\tau_{/ \mathcal{D}_{\tau}^{\ell}}$.
(iv) A bitrace defined on \mathfrak{M} satisfying $\tau\left(a_{1} \cdot x_{1}, a_{2} \cdot x_{2}\right)=$ $\tau\left(a_{1}, a_{2} \cdot\left(x_{1}^{+} \cdot x_{2}\right)\right)<\infty$, is called a left regular bitrace, where $a_{1}, a_{2} \in \mathcal{G}_{\tau}^{\ell}$,
$x_{1}, x_{2} \in \mathfrak{M}$ and with

$$
a_{2} \in \mathcal{L}\left(x_{1}^{+} \cdot x_{2}\right), x_{1}^{+} \in
$$

$$
\mathcal{L}\left(x_{2}\right),
$$

Definition: $\mathbf{1}^{\prime}$

For $\mathcal{N}_{\tau}^{\tau} \neq\{0\}$, let $\mathcal{G}_{\tau}^{\tau}$ be a subspace, such that
(i) $\quad \mathcal{G}_{\tau}^{\gamma} \subset \mathcal{R}(\mathfrak{M}) \cap \mathcal{N}_{\tau}^{\gamma}$
(ii) the linear span $\left[\lambda_{\tau}^{r}\left(\mathcal{G}_{\tau}^{r}\right)\right] \equiv$ $\mathcal{D}_{\tau}^{\gamma}$ of $\lambda_{\tau}^{\gamma}\left(\mathcal{G}_{\tau}^{\gamma}\right)$ is dense in $\mathcal{H}_{\tau}^{\gamma}$ and is denoted by \mathcal{D}_{τ}^{r}
(iii) \mathcal{G}_{τ}^{r} is a core for $\tau_{/ \mathcal{D}_{\tau}^{\tau}}$.
(iv) A bitrace on \mathfrak{M} satisfying $\tau\left(w_{1} . b_{1}, w_{2} \cdot b_{2}\right)=$ $\tau\left(b_{1},,\left(w_{2}, w_{1}^{+}\right) . b_{2}\right)<\infty \quad$ is called a right regular bitrace where, $b_{1}, b_{2} \in \mathcal{G}_{\tau}^{\tau}, w_{1}, w_{2} \in \mathfrak{M}$ with $\quad b_{2} \in \mathcal{R}\left(w_{2} . w_{1}^{+}\right), \quad w_{1}^{+} \in$ $\mathcal{R}\left(w_{2}\right)$

Definition: 2

A left (resp., right) , regular representation on a partial O^{*} - algebra \mathfrak{M}, denoted by , π_{τ}^{ℓ} (resp., π_{τ}^{r}), is defined
(i) for any $x_{1} \in \mathfrak{M}$ and $a_{1} \in \mathcal{G}_{\tau}^{\ell}$ let $x \rightarrow a . x, x \rightarrow x . b$ be continuous
$\pi_{\tau}^{\ell}\left(x_{1}\right) \lambda_{\tau}^{\ell}\left(a_{1}\right)=\lambda_{\tau}^{\ell}\left(a_{1} \cdot x_{1}\right)$.
(ii) for any $w_{1} \in \mathfrak{M}$ and $b_{1} \in \mathcal{G}_{\tau}^{r}$

$$
\pi_{\tau}^{r}\left(w_{1}\right) \lambda_{\tau}^{r}\left(b_{1}\right)=\lambda_{\tau}^{r}\left(w_{1} \cdot b_{1}\right)
$$

$(3)^{\prime}$

Remark:1

If a representation π is both left and right regular with domain then, it is called a regular representation.

Functionals Determined By Bitraces:

The two functionals, $\psi_{(., .)}^{G_{\tau}^{r}}, \psi_{(., .)}^{G_{\tau}^{\ell}}$ introduced, called the right functional (resp., left functional) defined on $\mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r}$ (resp., $\mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell} \quad$) are implemented by representations. Let $x \in \mathfrak{M}$ such that $x \neq e$, and let $x_{1} \in \mathcal{L}\left(\mathcal{G}_{\tau}^{\ell}\right)$ and $x_{2} \in$ $\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)$, then for arbitrary $a \in \mathcal{G}_{\tau}^{\ell}, b \in \mathcal{G}_{\tau}^{r}$,
maps with respect to the locally convex topology $\mathrm{t}_{\mathfrak{m}}$ (the graph topology) such that a. $x \equiv a_{1} \in \mathcal{G}_{\tau}^{\ell} \quad$ and $\quad x . b \equiv b_{1} \in \mathcal{G}_{\tau}^{r}$, we have $x_{1} \cdot a_{1} \in \mathcal{G}_{\tau}^{\ell}$ and $b_{1} \cdot x_{2} \in \mathcal{G}_{\tau}^{r}$, since $\tau\left(x_{1}, a_{1}, x_{1}, a_{1}\right)<\infty$ and $\tau\left(b_{1}, x_{2}, b_{1}, x_{2}\right)<$ ∞. These representations on the dense subspaces $\mathcal{G}_{\tau}^{r}, \mathcal{G}_{\tau}^{\ell}$, denoted by $\pi_{\tau}^{\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)}$ (resp., $\left.\pi_{\tau}^{\mathcal{L}\left(G_{\tau}^{\ell}\right)}\right)$, is defined by $\pi_{\tau}^{\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)}\left(x_{2}\right) \lambda_{\tau}^{r}(x . b)=\pi_{\tau}^{\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)}\left(x_{2}\right) \lambda_{\tau}^{r}\left(b_{1}\right)=$ $\lambda_{\tau}^{r}\left((x \cdot b) \cdot x_{2}\right)=\lambda_{\tau}^{r}\left(b_{1} \cdot x_{2}\right)$
$\pi_{\tau}^{\mathcal{L}\left(\mathcal{G}_{\tau}^{\ell}\right)}\left(x_{1}\right) \lambda_{\tau}^{\ell}(a . x)=\pi_{\tau}^{\mathcal{L}\left(\mathcal{G}_{\tau}^{\ell}\right)}\left(x_{1}\right) \lambda_{\tau}^{\ell}\left(a_{1}\right)=$ $\lambda_{\tau}^{\ell}\left(x_{1} \cdot(a \cdot x)\right)=\lambda_{\tau}^{\ell}\left(x_{1} \cdot a_{1}\right)$
for $x_{2} \in \mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)$ (resp., $x_{1} \in \mathcal{L}\left(\mathcal{G}_{\tau}^{\ell}\right)$)
given by $\quad \lambda_{\tau}^{\ell}\left(x_{1} \cdot a_{1}\right)=\lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{1}^{+}\right), \quad \psi_{\left(x_{1}, a_{1}\right)}^{G_{\tau}^{r}}\left(b_{1}, x_{2}\right)=\left\langle\lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{1}^{+}\right), \lambda_{\tau}^{r}\left(b_{1} \cdot x_{2}\right)\right\rangle$
$\lambda_{\tau}^{r}\left(b_{1} \cdot x_{2}\right)=\lambda_{\tau}^{\ell}\left(x_{2}^{+} \cdot b_{1}^{+}\right)$, respectively.
$=\tau\left(a_{1}^{+} \cdot x_{1}^{+}, b_{1} \cdot x_{2}\right)<\infty$

Definition:3

Using these representations in, (4), (4)' we
$=\tau\left(x_{2}^{+} \cdot b_{1}^{+}, x_{1} \cdot a_{1}\right)<\infty$ define the right (resp., left) functionals as mappings $\quad \psi_{(., .)}^{\mathcal{G}_{\tau}^{r}}: \mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r} \rightarrow \mathbb{C}^{*} \quad$ and $\psi_{(.,)}^{\mathcal{G}_{\tau}^{\ell}}: \mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell} \rightarrow \mathbb{C}^{*} \quad$ by,
$\psi_{\left(x_{1}, a_{1}\right)}^{G_{\tau}^{r}}\left(b_{1}, x_{2}\right)=$
$\left\langle\pi_{\tau}^{\mathcal{L}\left(g_{\tau}^{\ell}\right)}\left(x_{1}\right) \lambda_{\tau}^{\ell}(a . x), \pi_{\tau}^{\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)}\left(x_{2}\right) \lambda_{\tau}^{r}(x . b)\right\rangle$,
$x \in \mathfrak{M}$
$\psi_{\left(b_{1}, x_{2}\right)}^{G_{\tau}^{\ell}}\left(x_{1}, a_{1}\right)=$
$\left\langle\pi_{\tau}^{\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)}\left(x_{2}\right) \lambda_{\tau}^{r}(x . b), \pi_{\tau}^{\mathcal{L}\left(\mathcal{G}_{\tau}^{\ell}\right)}\left(x_{1}\right) \lambda_{\tau}^{\ell}(a . x)\right\rangle$,
$\psi_{\left(b_{1}, x_{2}\right)}^{G_{\tau}^{\ell}}\left(x_{1}, a_{1}\right)=\left\langle\lambda_{\tau}^{\ell}\left(x_{2}^{+} . b_{1}^{+}\right), \lambda_{\tau}^{\ell}\left(x_{1} \cdot a_{1}\right)\right\rangle$

Remark: 3 For the unit element, we have $\psi_{\left(x_{1}, a_{1}\right)}^{\mathcal{G}_{\tau}^{r}}(e . e) \equiv \psi_{\left(x_{1}, a_{1}\right)}^{\mathcal{G}_{\tau}^{r}} ;$
$\psi_{\left(b_{1}, x_{2}\right)}^{\mathcal{G}_{\tau}^{\ell}}(e . e) \equiv \psi_{\left(b_{1}, x_{2}\right)}^{\mathcal{G}_{\tau}^{\ell}}$

Definition: 4

A left functional $\psi^{G^{\ell}}$, is a left regular functional if for any $a_{1}, a_{2} \in \mathcal{G}_{\tau}^{\ell}$, and $x \in \mathfrak{M}$
for each $\quad\left(x_{1}, a_{1}\right) \in \mathcal{G}_{\tau}^{\ell} \times \mathcal{G}_{\tau}^{\ell} \quad$ and $\left(b_{1}, x_{2}\right) \in \mathcal{G}_{\tau}^{r} \times \mathcal{G}_{\tau}^{r}$. The name right (resp., left) functionals arises from the representation appearing on the right. The sesquilinear forms are assumed to be linear on the right . In simple terms the functionals are given by,
$y_{1}, y_{2} \in \mathcal{R}\left(\mathcal{G}_{\tau}^{\ell}\right), \quad$ with $\quad y_{1}^{+} \in \mathcal{L}\left(y_{2}\right)$, $\left(y_{1}^{+} . y_{2}\right) \in \mathcal{R}\left(a_{2}\right)$ the functional is of the form $\psi_{a_{1}, e}^{\mathcal{G}_{\tau}^{\ell}}\left(e, a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)\right)<\infty$, whenever the defining bitrace is also left regular. Similarly we have the right regular functional to be of the form $\psi_{b_{1}, e}^{G^{r} r}\left(e,\left(x_{2} \cdot x_{1}^{+}\right) \cdot b_{2}\right)<\infty$, where $b_{1}, b_{2} \in$ \mathcal{G}_{τ}^{r}, and $x_{1}, x_{2} \in \mathcal{L}\left(\mathcal{G}_{\tau}^{r}\right)$,
(a) Let $a_{1}, a_{2} \in \mathcal{G}_{\tau}^{\ell}, \quad y_{1}, y_{2} \in$ $\mathcal{R}\left(\mathcal{G}_{\tau}^{\ell}\right), \quad$ and $\quad\left(y_{1}{ }^{+} \cdot y_{2}\right) \in \mathcal{R}\left(a_{2}\right)$. since τ is assumed to be left regular,
We called ψ a regular functional if for
any, $a_{1}, a_{2} \in \mathcal{G}_{\tau} \subset \mathcal{M}(\mathfrak{M}) \cap \mathcal{N}_{\tau}$, and

$$
\psi_{y_{1}{ }^{+}, a_{1}^{+}}^{G_{\tau}^{\ell}}\left(a_{2}, y_{2}\right)=
$$

$y_{1}, y_{2} \in \mathcal{M}\left(\mathcal{G}_{\tau}\right), \quad$ with $\quad\left(y_{1} . y_{2}^{+}\right) \in$
$\mathcal{L}\left(a_{2}^{+}\right), \quad\left(y_{1}^{+} \cdot y_{2}\right) \in \mathcal{R}\left(a_{2}\right)$

$$
\psi_{a_{1}}^{G_{\tau}^{\ell}}\left(a_{2} \cdot\left(y_{1}{ }^{+} \cdot y_{2}\right)\right)
$$

$$
\psi_{y_{1}+, a_{1}^{+}}^{G_{\tau}^{\ell}}\left(a_{2}, y_{2}\right)=\left\langle\lambda_{\tau}^{r}\left(y_{1}{ }^{+} \cdot a_{1}^{+}\right), \lambda_{\tau}^{\ell}\left(a_{2} . y_{2}\right)\right\rangle
$$

we have $\quad \psi_{a_{1}, e}^{\mathcal{G}_{\tau}^{\ell}}\left(e, a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)\right)=$
$\psi_{a_{1}^{+}, e}^{\mathcal{G}^{r}}\left(e,\left(y_{1} \cdot y_{2}^{+}\right) \cdot a_{2}^{+}\right)<\infty$,

The following lemma give the relations
between the left and right functionals.

Lemma 1

(a) $\psi_{y_{1}{ }^{+} \cdot a_{1}^{+}}^{G^{\ell}}\left(a_{2}, y_{2}\right)$ is a left regular $\quad \tau\left(a_{1}, a_{2} \cdot\left(y_{1}{ }^{+} \cdot y_{2}\right)\right)$
functional, whenever τ is left regular

$$
\left\langle\lambda_{\tau}^{\ell}\left(a_{1} \cdot y_{1}\right), \lambda_{\tau}^{\ell}\left(a_{2} \cdot y_{2}\right)\right\rangle
$$

$$
\tau\left(a_{1}, a_{2} \cdot\left(y_{1}{ }^{+} \cdot y_{2}\right)\right)
$$

(b)

$$
\left\langle\lambda_{\tau}^{\ell}\left(a_{1} \cdot e\right), \lambda_{\tau}^{\ell}\left(a_{2} \cdot\left(y_{1}{ }^{+} \cdot y_{2}\right)\right)\right\rangle
$$

$$
\psi_{x_{1}, a_{1}}^{G_{\tau}^{r}}\left(b_{1}, x_{2}\right)=\psi_{b_{1}^{+}, x_{2}^{+}}^{G^{\ell}}\left(a_{1}^{+}, x_{1}^{+}\right)
$$

$$
=\psi_{a_{1} \cdot e}^{G_{\tau}^{\ell}}\left(a_{2} \cdot\left(y_{1}{ }^{+} \cdot y_{2}\right)=\psi_{a_{1}}^{G_{\tau}^{\ell}}\left(a_{2} \cdot\left(y_{1}{ }^{+} \cdot y_{2}\right)\right)\right.
$$

(b)

Proof;

$$
\begin{aligned}
\psi_{\left(x_{1}, a_{1}\right)}^{G_{\tau}^{r}}\left(b_{1}, x_{2}\right) & =\left\langle\lambda_{\tau}^{\ell}\left(x_{1} \cdot a_{1}\right), \lambda_{\tau}^{r}\left(b_{1} \cdot x_{2}\right)\right\rangle \\
& =\left\langle\lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{1}^{+}\right), \lambda_{\tau}^{r}\left(b_{1} \cdot x_{2}\right)\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& \operatorname{ISSN} 2229-5518 \\
&=\tau\left(a_{1}^{+} \cdot x_{1}^{+}, b_{1} \cdot x_{2}\right) \\
&=\left\langle\left(x_{2}^{+} \cdot b_{1}^{+}, x_{1} \cdot a_{1}\right)\right. \\
&=\left\langle\lambda_{\tau}^{r}\left(x_{2}^{+} \cdot b_{1}^{+}\right), \lambda_{\tau}^{r}\left(x_{1} \cdot a_{1}\right),\right\rangle \\
&=\left\langle\lambda_{\tau}^{r}\left(x_{2}^{+} \cdot b_{1}^{+}\right), \lambda_{\tau}^{\ell}\left(a_{1}^{+} \cdot x_{1}^{+}\right),\right\rangle= \\
& \psi_{\left(b_{1}^{+}, x_{2}^{+}\right)}^{G_{\tau}^{\ell}}\left(a_{1}^{+}, x_{1}^{+}\right)
\end{aligned}
\end{aligned}
$$

Remark:4

From this lemma, we have the following relations,

$$
\psi_{\left(y_{1}{ }^{+}, a_{1}^{+}\right)}^{\mathcal{G}_{\tau}^{\ell}}\left(a_{2}, y_{2}\right)=\psi_{\left(y_{2}^{+}, a_{2}^{+}\right)}^{\mathcal{G}_{r}^{r}}\left(a_{1}, y_{1}\right)
$$

$\psi_{\left(b_{1}, x_{2}\right)}^{\mathcal{G}_{\tau}^{\ell}}\left(x_{1} \cdot a_{1}\right)=\psi_{\left(x_{1}^{+}, b_{1}^{+}\right)}^{\mathcal{G}_{r}^{r}}\left(a_{1}^{+} \cdot x_{2}^{+}\right)$.

These expressions are analogous to commutations relations of the right and left representations on a generalized Hilbert algebras: This provides us with the following;
$\left\langle\lambda_{\tau}^{\ell}\left(a_{1}^{+} \cdot e\right), \lambda_{\tau}^{\ell}\left(\left(a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)\right)\right\rangle\right.$

Proof;

Suppose that τ is regular on $\quad \mathcal{G}_{\tau} \subset$ $\mathcal{M}(\mathfrak{M}) \cap \mathcal{N}_{\tau}$, to show that the functional is regular we need only to show that $\psi_{a_{1}}^{G_{\tau}^{\ell}}\left(a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)\right)=\psi_{a_{1}^{+}}^{G_{\tau}^{r}}\left(\left(y_{1} \cdot y_{2}^{+}\right) \cdot a_{2}^{+}\right)<$
∞.

Let $\quad\left(y_{2} . y_{1}^{+}\right) \in \mathcal{L}\left(a_{1}\right), \quad$ and $\left(y_{2} . y_{1}^{+}\right)^{+} \in \mathcal{L}\left(a_{2}^{+}\right)$

$$
\psi_{a_{1}}^{G_{\tau}^{\ell}}\left(a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)\right)=
$$

$$
\begin{align*}
& \psi_{a_{1 .} \cdot e}^{G \mathcal{G}}\left(a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)=\right. \tag{7}\\
& \left\langle\lambda_{\tau}^{r}\left(a_{1 \cdot} \cdot e\right), \lambda_{\tau}^{\ell}\left(\left(a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)\right)\right\rangle\right.
\end{align*}
$$

$$
\left\langle\lambda_{\tau}^{t}\left(a_{1}^{+} \cdot e\right), \lambda_{\tau}^{t}\left(\left(a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)\right)\right\rangle\right.
$$

$\tau\left(a_{1}^{+}, a_{2} \cdot\left(y_{1}^{+} \cdot y_{2}\right)\right)$
$\tau\left(a_{1}^{+} . y_{1}, a_{2} . y_{2}\right)$

Proposition:1

If τ is a regular bitrace on \mathcal{G}_{τ}, then ψ is a
$\tau\left(y_{2}^{+} . a_{2}^{+}, y_{1}^{+} . a_{1}\right)$ regular functional on \mathcal{G}_{τ}

$$
=\quad=\left\langle\lambda_{\tau}^{r}\left(b_{1} \cdot x_{2}\right), \lambda_{\tau}^{\ell}\left(x_{1} \cdot a_{1}\right)\right\rangle
$$

$\tau\left(\left(y_{2} \cdot y_{1}^{+}\right)^{+} . a_{2}^{+}, a_{1}\right)$

$$
=\quad=\left\langle\lambda_{\tau}^{\ell}\left(x_{2}^{+} \cdot b_{1}^{+}\right), \lambda_{\tau}^{\ell}\left(x_{1} \cdot a_{1}\right)\right\rangle
$$

$\tau\left(a_{1}^{+}, a_{2} .\left(y_{2} . y_{1}^{+}\right)\right)$

$$
\begin{aligned}
& =\tau\left(x_{2}^{+} \cdot b_{1}^{+}, x_{1} \cdot a_{1}\right) \\
& =\quad=\tau\left(x_{1}^{+} \cdot b_{1}^{+}, x_{2} \cdot a_{1}\right)
\end{aligned}
$$

$\left\langle\lambda_{\tau}^{\ell}\left(a_{1}^{+}\right), \lambda_{\tau}^{r}\left(\left(y_{1} \cdot y_{2}^{+}\right) \cdot a_{2}^{+}\right)\right\rangle$

$$
\psi_{a_{1}^{+}}^{G_{\tau}^{r}}\left(\left(y_{1} \cdot y_{2}^{+}\right) \cdot a_{2}^{+}\right)<\infty
$$

$$
\begin{aligned}
& =\left\langle\lambda_{\tau}^{\ell}\left(x_{1}^{+} \cdot b_{1}^{+}\right), \lambda_{\tau}^{\ell}\left(x_{2} \cdot a_{1}\right)\right\rangle \\
= & =\left\langle\lambda_{\tau}^{\ell}\left(x_{1}^{+} \cdot b_{1}^{+}\right), \lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{2}^{+}\right)\right\rangle \\
& =\quad\left\langle\pi_{\tau}^{\mathcal{L}\left(g_{\tau}^{\ell}\right)}\left(x_{1}^{+}\right) \lambda_{\tau}^{\ell}\left(b_{1}^{+}\right),\right.
\end{aligned}
$$

Lemma: $2 \quad$ For $a_{1} \in \mathcal{G}_{\tau}^{\ell}, b_{1} \in \mathcal{G}_{\tau}^{r}$,

$$
\begin{aligned}
\pi_{\tau}^{\mathcal{R}\left(g_{\tau}^{r}\right)}\left(x_{2}^{+}\right) \lambda_{\tau}^{r} & \left.\left(a_{1}^{+}\right)\right\rangle \\
& =\psi_{\left(x_{1}^{+}, b_{1}^{+}\right)}^{G_{\tau}^{r}}\left(a_{1}^{+}, x_{2}^{+}\right)
\end{aligned}
$$

Proof;

The proof is based on noting that

Remark:5

 commutations is implied by the relation,$$
\psi_{\left(b_{1}, x_{2}\right)}^{G_{\tau}^{\ell}}\left(x_{1}, a_{1}\right)=\psi_{\left(x_{1}^{+}, b_{1}^{+}\right)}^{G_{r}^{r}}\left(a_{1}^{+}, x_{2}^{+}\right)
$$

The functional $\psi_{\left(b_{1}, x_{2}\right)}^{\mathcal{G}_{\tau}^{\ell}}$ is an idempotent by composition that is,

Let $x_{2} \in \mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right) \cap \mathcal{L}\left(\mathcal{G}_{\tau}^{\ell}\right), \quad x_{1} \in \mathcal{L}\left(b_{1}^{+}\right)$
and $\left(x_{2} \cdot a_{1}\right) \in \mathcal{G}_{\tau}^{\ell}$, we have,

$$
\begin{aligned}
& \psi_{\left(b_{1}, x_{2}\right)}^{\mathcal{G}_{\ell}^{\ell}}\left(x_{1}, a_{1}\right)= \\
& \left\langle\pi_{\tau}^{\mathcal{R}\left(G_{\tau}^{r}\right)}\left(x_{2}\right) \lambda_{\tau}^{r}\left(b_{1}\right), \pi_{\tau}^{\mathcal{L}\left(G_{\tau}^{\ell}\right)}\left(x_{1}\right) \lambda_{\tau}^{\ell}\left(a_{1}\right)\right\rangle
\end{aligned}
$$

Summary of
some
properties of

Functionals determined By Bitraces:

$=\left\langle\pi_{\tau}^{\mathcal{L}\left(g_{\tau}^{\ell}\right)}\left(x_{1}^{+}\right) \lambda_{\tau}^{\ell}\left(b_{1}^{+}\right), \pi_{\tau}^{\mathcal{R}\left(G_{\tau}^{r}\right)} 。\right.$
$\left.\psi_{\left(x_{1}^{+}, b_{1}^{+}\right)}^{\mathcal{G}_{\tau}^{r}}\left(a_{1}^{+}, x_{2}^{+}\right) \lambda_{\tau}^{r}(e . e)\right\rangle$
$=\left\langle\lambda_{\tau}^{\ell}\left(x_{1}^{+}, b_{1}^{+}\right),\left\langle\lambda_{\tau}^{\ell}\left(x_{1}^{+}, b_{1}^{+}\right), \pi_{\tau}^{\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)} 。\right.\right.$
$\left.\left.\lambda_{\tau}^{r}\left(a_{1}^{+} . x_{2}^{+}\right)\right\rangle \lambda_{\tau}^{r}(e . e)\right\rangle$
note that, for $\lambda_{\tau}^{r}(e . e)=I$, from definition we have,

$$
\begin{aligned}
& \pi_{\tau}^{\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)} \circ \lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{2}^{+}\right) \\
= & \pi_{\tau}^{\mathcal{R}\left(\mathcal{G}_{\tau}^{r}\right)}\left(\lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{2}^{+}\right)\right) \lambda_{\tau}^{r}(e . e)= \\
& \lambda_{\tau}^{r}(e . e) \lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{2}^{+}\right)=\lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{2}^{+}\right),
\end{aligned}
$$

hence eqn. (**) becomes,

$$
\begin{aligned}
& \psi_{\left(b_{1}, x_{2}\right)}^{G_{\tau}^{\ell}} \circ \psi_{\left(b_{1}, x_{2}\right)}^{\mathcal{G}_{\tau}^{\ell}}\left(x_{1}, a_{1}\right)=\left\langle\lambda_{\tau}^{\ell}\left(x_{1}^{+} \cdot b_{1}^{+}\right),\right. \\
& \left.\left\langle\lambda_{\tau}^{\ell}\left(x_{1}^{+}, b_{1}^{+}\right), \lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{2}^{+}\right)\right\rangle \lambda_{\tau}^{r}(e . e)\right\rangle, \\
& = \\
& \left\langle\lambda_{\tau}^{\ell}\left(x_{1}^{+}, b_{1}^{+}\right), \lambda_{\tau}^{r}\left(a_{1}^{+} \cdot x_{2}^{+}\right)\right\rangle\left\langle\lambda_{\tau}^{\ell}\left(x_{1}^{+} \cdot b_{1}^{+}\right), \lambda_{\tau}^{r}(e . e)\right\rangle \\
& =\psi_{\left(x_{1}^{+}, b_{1}^{+}\right)}^{G_{1}^{r}}\left(a_{1}^{+}, x_{2}^{+}\right) \psi_{\left(x_{1}^{+}, b_{1}^{+}\right)}^{G_{\tau}^{r}}(e, e) \\
& =\psi_{\left(b_{1}, x_{2}\right)}^{G_{\tau}^{\ell}}\left(x_{1}, a_{1}\right)
\end{aligned}
$$

(1) G.O.S. Ekhaguere, "Bitrace on

Partial O*-Algebras", International Journal of Mathematics and Mathematical Sciences, volume 2007, Article ID 43013, 19 pages.
(2) J.P. Antoine, A. Inoue, C. Trapani, Partial *- algebras of closable operators. A review, Rev. Math. Phys. 8 (1996) pp 1-42.

